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The structure of void space in two- and three-dimensional �3D� polymer solutions is studied using Voronoi
tessellation and percolation theory. The polymer molecules are modeled as freely jointed chains of N tangent
hard disks �two dimensions� or spheres �three dimensions�. Polymer chains are equilibrated via Monte Carlo
simulations and the pore space in configurations of equilibrated chains is mapped using Voronoi tessellation. In
d dimensions a Voronoi vertex is the center of the sphere tangent to the d+1 nearest monomers. An edge of the
Voronoi diagram is the shortest route between two neighboring vertices. The edge is considered connected if a
monomer can pass through and disconnected otherwise. The Voronoi construction is used to calculate the
percolation threshold of the void space. The most interesting result is that the polymer area fraction at the
percolation threshold is a nonmonotonic function of N in two dimensions but monotonically reaches a constant
value in three dimensions. The crossover behavior of the percolation threshold is also observed in pseudo-3D.
The pore size distribution decreases monotonically with increasing pore size. This is markedly different from
that in configurations of hard disks �monomeric fluid� where the pore size distribution is peaked at finite size.
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I. INTRODUCTION

The free volume �or accessible volume� is the volume in a
polymer melt or solid that is accessible to penetrants. The
size and connectivity of free volume determine various prop-
erties such as penetrant diffusivity, which is important in
applications such as gas permeation and separation using
membranes �1,2� or nanocomposites �3�. Recently, positron
annihilation lifetime spectroscopy �3–6� has been used as a
direct method to probe pore sizes of amorphous polymers.
Computer simulations and numerical analyses �7–10� have
been also conducted extensively to understand pore size dis-
tributions and pore connectivities of various polymeric ma-
terials.

In this paper we study the structure of void space in poly-
mer solutions in two and three dimensions. While most stud-
ies of structure focus on correlations between polymer sites,
little attention has been focused on the distribution and con-
nectivity of the void space. It has been suggested, for ex-
ample, that two-dimensional �2D� polymers would become
disklike at a high concentration �11�, although a Monte Carlo
�MC� simulation study �12� suggests that 2D polymers did
not become disklike at high concentrations and could even
interpenetrate to some extent. Scaling exponents for chain
size are relatively insensitive to the shape of the molecules in
two dimensions, but the void structure or accessible area
might be more sensitive to the shape.

The void space is a function of many-body structural cor-
relations in the polymer and could be a strong function of the
chain shape. For example, if polymers were disklike, the area
accessible to a penetrant “inside” a polymer molecule would
be isolated from the other percolating accessible area. In
such a case, because longer chains should form bigger disk-
like molecules, both nonpercolating and percolating free ar-
eas should increase with chain length for a fixed polymer
area fraction. If the polymer molecules could interpenetrate,
however, the accessible area might show more complicated
behavior.

In this work, we investigate polymer solutions as a model
system to understand the effect of polymer structure on
the pore percolation threshold and accessible area. Most of
our attention is focused on 2D polymer solutions, although
we present some results for three-dimensional �3D� and
quasi-3D polymers for comparison. Our emphasis on 2D
polymer solutions is motivated by the recent developments
of 2D polymerization techniques in lipid bilayers �13,14� and
liquid crystals �15�. In these studies amphiphiles or oligo-
mers are organized into layered structures and catenated by
chemical reactions to become two-dimensional polymers. In
lipid bilayers the lateral diffusion coefficient of a probe mol-
ecule decreased first with an increase in the degree of poly-
merization, N, and did not change beyond a critical value of
N �16,17�. Understanding the effect of polymer structure on
accessible area would also shed light on the lateral diffusion
of lipids.

There have been many computational algorithms pro-
posed to analyze the pore structure in porous media �18–23�,
and the method of Voronoi tessellation �24� has been one of
the popular approaches �7,8,25–36�. Voronoi tessellation di-
vides space into nonoverlapping convex polyhedra, and dif-
ferences in methods arise from the definitions of a pore and
pore connectivity. Rigby and Roe �7� applied Voronoi tessel-
lation to investigate the cavity size and shape of a polymer
liquid and glass. Arizzi et al. �25� conducted Delaunay tes-
sellation to polymeric glasses and investigated unoccupied
volume distribution and cluster shapes. Greenfield and The-
odorou �26� studied the effect of a tracer size in glass poly-
propylene microstructures using Voronoi tessellation. By
comparing the polymer glass to a random close-packed
atomic glass, they found that the average accessible volume
fraction was larger in the polymer than in the atomic glass.
Voronoi tessellation has also been applied to study free vol-
ume of nanoporous membranes �27,28�.

In this work, we map pores in continuous space on an
irregular lattice by using Voronoi tessellation and investigate
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the pore percolation threshold. A Voronoi diagram is con-
structed for an equilibrated polymer configuration. Each
convex polyhedron of the Voronoi diagram contains a mono-
mer. In two dimensions, a pore is defined as a circle tangen-
tial to three neighbor monomers and its center is located at a
Voronoi vertex. If an edge is wide enough and a monomer
can move along the edge that connects two pores, the edge is
determined connected. Otherwise, the edge is considered dis-
connected �passage criterion�. The connected edges and ver-
tices form a pore cluster. A percolating pore cluster is then
located via a recursive algorithm that takes periodic bound-
ary conditions into account.

Our analysis shows that in two dimensions the percolation
threshold is a nonmonotonic function of N because a bigger
portion of accessible area becomes nonpercolating as N is
increased while the percolating accessible area is decreased
significantly. This argues strongly against disklike conforma-
tions at high concentrations. In 3D solutions, however, the
percolation threshold monotonically increases for short
chains before reaching a constant value for N�8. These sug-
gest that the lipid bilayer systems �16,17� should be viewed
as three dimensions rather than 2D systems.

The rest of the paper is organized as follows. The model
and simulation method are described in Sec. II, results are
presented and discussed in Sec. III, and conclusions are pre-
sented in Sec. IV.

II. MODEL AND SIMULATION DETAILS

Polymer solutions in two dimensions are prepared by
placing chain molecules in a square of side L with periodic
boundary conditions in all directions. The molecules are
modeled as freely jointed tangent hard disk chains with a
disk diameter �m=�, where � is the unit length. Each chain
molecule consists of N beads �N=1–1024� and the number
of chains �n� varies from 32 to 3072 depending on L, N, and
the polymer area fraction �m�Nn��m

2 /4L2. L ranges from
44.8 to 500 and �m ranges from 0.1 to 0.32. n disks of
diameter, �m, are inserted as seeds into the simulation cell
and grown into chains of a desired length, N, using a growth
and equilibration algorithm �37�. In three dimensions, freely
jointed tangent hard sphere chains of N beads are inserted
into a cubic box of side L�17.5. For 3D chains, N and the
polymer volume fraction �m��Nn��m

3 /6L3� range from 1 to
128 and from 0.1 to 0.31, respectively. In order to investigate
the crossover behavior from two dimensions to three dimen-
sions, we also model polymers in pseudo-3D by placing
chains between two infinite smooth walls placed at z=0 and
z=h. When h=1, the system corresponds to two dimensions.
In our simulations, h changes from 1.1 to 2.

Polymer molecules are equilibrated by MC simulations.
MC simulations are performed using standard Metropolis al-
gorithm to equilibrate polymer melts. A molecule is chosen
at random and random moves are attempted via translation,
rotation, reptation �38�, and continuum configurational bias
�39� algorithms. A random move is accepted if the trial con-
figuration does not result in an overlap with other chains and
rejected otherwise. Each initial configuration is equilibrated
over several runs of tens of million attempted moves. The

mean-square radius of gyration �Rg
2� is calculated from

�Rg
2� �
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where r j
i is the position of bead j of a chain i, rcm

i is the
center of mass of a chain i, and �¯ � denotes an ensemble
average. The values of �Rg

2� are found to agree well with
previous simulations by Yethiraj �12�. For each set of
�L ,N ,�m�, about 100 snapshots of equilibrium configura-
tions are collected. Voronoi tessellation is then performed for
each configuration to investigate the percolation of the acces-
sible area.

In Voronoi tessellation, space is divided into many non-
overlapping convex polyhedra �24�, each of which contains
one monomer bead. A point in space belongs to the polyhe-
dron of a monomer if and only if the monomer bead is the
nearest one to that point. The edges and vertices of a poly-
hedron are equidistant from two and three monomers, re-
spectively �34–36�. A vertex is usually an intersection of
three edges and is identical to the center of a circle tangential
to three monomers. The tangential circle and its diameter are
defined as a pore and pore size ��p=2bl−�m�, where bl is the
distance between the vertex l and the center of the nearest
monomer �see Fig. 1�. An edge connecting two neighbor
vertices �pores� is considered as the route through which a
monomer can travel between two pores. The edge width �dm�
is defined as the distance between centers of two monomers
equidistant from an edge m. Once edges and vertices are
determined, not only their positions but also their topological
informations are stored in arrays.

After Voronoi diagram is constructed, we determine the
connectivity of edges via passage criterion �34–36�. A mono-
mer cannot move along the edge m if dm��m+� f because
the edge width is too narrow for a monomer to pass through.
In this case we consider the edges disconnected. In case the
width is wide enough for the monomer �dm��m+� f�, the
edge is determined a connected one. A pore cluster is defined
as a set of connected edges and their vertices and is located

FIG. 1. A schematic figure of Voronoi tessellation of monomers
�filled circles�. Solid lines and empty circles represent edges of
polyhedra and pores, respectively. bl and dm are distances between a
vertex l and a monomer and between two monomers equidistant
from an edge m, respectively.
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via a recursive algorithm. The percolation of each pore clus-
ter is also examined considering periodic boundary condi-
tions. This algorithm is straightforward to apply to three-
dimensional polymers �36�. In three dimensions, each pore is
surrounded by a Delaunay tetrahedron with four neighbor
particles at each vertex of the tetrahedron. The edge width is
redefined as a diameter of a tangential circle to three particles
on the face of the tetrahedron. In pseudo-3D, the smooth
walls used in MC simulations are replaced by the structured
walls composed of densely overlapped hard spheres. Those
spheres and the configurations of polymers from MC simu-
lations are used to construct the Voronoi diagrams in pseudo-
3D. The Voronoi diagrams are tested by examining the Euler
Formula, i.e., V−E+F=2 for every polyhedron, where V, E,
and F denote the numbers of vertices, edges, and faces of
each polyhedron, respectively.

A typical Voronoi diagram is depicted in Fig. 2 for �m
=0.2 and N=16. Solid and dashed lines represent connected
and disconnected edges of polyhedra, respectively. Mono-
mers can travel along the solid lines. Some pore clusters are
isolated from a percolating pore cluster. If a monomer is
placed in this isolated cluster, it would be trapped in the
isolated pore cluster. When the chain length N is long
enough, chains tend to form a loop inside which is isolated
from a percolating cluster. Therefore, more isolated pore
clusters are constructed with longer chains.

The mean cluster size S��m ,L� for a given system size L
is defined as

S��m,L� � 	
s=1

�

sP�s� , �2�

where s is the number of edges in a finite cluster and P�s� is
the probability that an edge belongs to a cluster containing s

edges. The percolating pore cluster, if any, is excluded from
this calculation. The polymer area fraction at the percolation
threshold �c is identical to the peak position of S��m ,L�
because the mean cluster size diverges at the percolation
threshold when L→�. When �m��c, pore clusters are
small. Bigger pore clusters are created and the mean cluster
size is increased as �m is decreased down to �c. When �m
��c, the mean cluster size is decreased as �m is decreased
because most pores belong to a percolating pore cluster and
the percolating pore cluster is excluded from the calculation
of the mean cluster size. Therefore, the peak position of the
mean cluster size is located at the percolation threshold. As L
is increased, the peak height of S��m ,L� increases promi-
nently. In this work, S��m ,L� is averaged over about 100
polymer configurations.

The fraction of accessible area ��acc� is estimated by
throwing 1	106 test particles with a diameter � f randomly
in the simulation cell and calculating the fraction of nonover-
lapped test particles. Similarly, the fraction �p of percolating
accessible area for monomers is the fraction of nonover-
lapped test particles whose nearest pore belongs to a perco-
lating pore cluster. The fraction �np of nonpercolating acces-
sible area is then defined as �np��acc−�p. �acc and �p are
averaged over ten polymer configurations.

III. RESULTS AND DISCUSSION

The majority of this section is concerned with 2D poly-
mer solutions, where we classify space as either accessible or
nonaccessible. Accessible areas are comprised of pores
whose sizes are bigger than a monomer ��p�� f� so that
monomers can access such areas. The accessible areas are
categorized again into percolating and nonpercolating acces-
sible areas. The percolating accessible area is the area of a
percolating pore cluster. If a monomer is located in the per-
colating accessible area, the monomer can diffuse out
through space, whereas nonpercolating accessible areas con-
sist of isolated pore clusters; thus monomers in those are
trapped.

For a given �m, the fraction of accessible area ��acc� in-
creases and the nonaccessible area decreases as N is in-
creased. This can be understood by noting that as N increases
at fixed �m, the number of monomers is constant but more

FIG. 3. Simulation results for accessible area fraction, �acc, as a
function of N for �m=0.15, 0.2, and 0.25.

-20

-15

-10

-5

0

5

10

15

20

-20 -15 -10 -5 0 5 10 15 20

y

x
FIG. 2. A Voronoi diagram for N=16 and �m=0.2. Filled circles

represent monomers. Solid and dashed lines represent connected
and disconnected edges of polyhedra, respectively.
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monomers are bonded to other monomers. When three sepa-
rate monomers are located close enough to one another, it is
very likely that the area surrounded by those three monomers
might not be big enough for a monomer, thus becoming non-
accessible. On the other hand, if these three monomers are
joined into a trimer, the probability of a large nonaccessible
space is decreased. Therefore �acc increases with increasing
N. Figure 3 depicts �acc as a function of N for several values
of �m. For a fixed �m, �acc increases with N and for a fixed
N, �acc decreases as �m is increased. This behavior was also
observed in 3D polymer glasses by Greenfield and The-
odorou �26�. They found that the connectivity of polymers
tends to group the unoccupied volume into a few larger and
many smaller clusters. This is also consistent with the fact
that the pore percolation threshold of 3D polymers is differ-
ent from that of monomeric media due to the larger porosity
of polymers �36�.

The pore size distribution �P��p�� is qualitatively differ-
ent for polymeric systems when compared to systems of
monomers or dimers. Figure 4 depicts P��p� for N=1, 4, 8,
16, and 256 and for �m=0.2. For N=1 or 2, P��p� has a peak
at a nonzero value of �p at �p�1.5�. For N�2, however,
the peak position of P��p� shifts to �p=0 and the distribution
narrows with increasing N. We attribute this to the fact that
many small pores are constructed near a chain and the num-
ber of small pores therefore increases with N. The pore size
distribution is insensitive to N for N�16.

For small enough values of �m, the biggest pore cluster
percolates throughout space. As �m increases beyond a criti-

cal value, �c, no percolating cluster exists. �c is, therefore,
defined as the polymer area fraction at the pore percolation
threshold and is estimated by calculating mean cluster size
S��m ,L�. At �m=�c, S��m ,L� diverges in the limit L→�. In
practice, we obtain S��m ,L� for three different values of L
and obtain �c from the location of the peak.

For small N, when short chains are combined to become
longer chains, both the accessible area and �c increase. For
infinite N, however, because the overlap area fraction ����
goes to zero ���
N /Rg

2
N−0.5� and most of the accessible
area is confined within the infinitely long chains, �c should
decrease to zero. Therefore, the nonmonotonic behavior of
�c is expected as a function of N and is observed clearly with
a maximum at N=8 in Fig. 5. However, in our simulations
�c does not appear to show the expected asymptotic behav-
ior, which implies that the values of N studied are far from
the long chain limit. From the figure, one can estimate that
�c�0.42N−0.17 for N�16. If this approximate relation holds
for larger values of N, �c�0.08 only when N�10 000. This
suggests that we would be able to observe the limiting case
only for N�10 000, which is well beyond our computational
resources.

The nonmonotonic behavior of �c seems to conflict with
the above observation that �acc is a monotonically increasing
function of N. We plot mean cluster size as a function of �acc

FIG. 4. Pore size distributions �P��p�� for N=1, 4, 8, 16, and
256 for �m=0.2.

FIG. 5. Simulation results for percolation thresholds, �c, as a
function of N.

FIG. 6. Simulation results for nonpercolating accessible area
fraction, �np, as a function of �m for N=1–256.

FIG. 7. Simulation results for percolating accessible area frac-
tion, �p, as a function of �m for N=1–256.
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instead of �m �not shown� and find that the accessible area at
the percolation threshold is an increasing function of N; i.e.,
the accessible area required for percolation increases with
increasing N. This is because a bigger portion of the acces-
sible area becomes nonpercolating as N is increased. As
shown in Fig. 6, the nonpercolating accessible area fraction
�np increases with increasing N. Therefore, even though �acc
increases with N, �np also increases, which results in the
nonmonotonic behavior in �c.

The simulations argue against the disklike model for
chain conformations in two dimensions. If 2D polymers were
disklike a longer chain would form a bigger disklike mol-
ecule. For a fixed value of �m, longer chains form a fewer
number of disklike molecules but with a larger diameter thus
providing monomers with a larger percolating accessible
area as N increases. This is not observed, however, in the
simulations. Figure 7 depicts the percolating accessible area
fraction �p as a function of �m. From N=1 to 2, �p increases
significantly. For N�4, �p is insensitive to N for a given �m
and, in fact, decreases as N goes from 8 to 256. This implies
that polymers are not disklike in two dimensions, which is
consistent with the previous observation in MC simulations
�12�.

In three dimensions �c does not show a nonmonotonic
dependence on N. Figure 8 shows that �c increases with N
but reaches a plateau at �c=0.29 beyond N=8. When mono-
mers are linked via chemical bonds to synthesize longer
polymers, the excluded volume usually decreases �26�,
which is why �c increases with N for small values of N. But
this effect becomes less important for longer chains where
chain ends are fewer �for a given value of �m�. The satura-
tion of the effect for relatively short chains �N=8�, however,
is surprising.

The transition of the percolation behavior from two di-
mensions to three dimensions occurs for small values of h
�2. Figure 9 depicts the pseudopercolating area fraction,
�A, defined as �A�Nn��M

2 /4L2 at the percolation threshold,
as a function of N for various values of h. As h �the finite

thickness in three dimensions� is increased from 1 to 2, the
nonmonotonic behavior of the percolation threshold concen-
tration becomes less pronounced and �A shows behavior
similar to that observed in three dimensions for h=2.

IV. SUMMARY AND CONCLUSIONS

We study the distribution and connectivity of accessible
area �volume� in polymer solutions. The pore size distribu-
tion of polymers is qualitatively different from that of mono-
mers or dimers, with no peak at finite values of pore sizes �in
polymeric media�. The polymer volume fraction at pore per-
colation threshold is a nonmonotonic function of N in two
dimensions with a maximum at N=8. This is because the
accessible area fraction required for percolation increases as
the chain length is increased. For large N a large fraction of
accessible area is inside the molecules and does not contrib-
ute to the accessible area percolation. The percolating area
fraction decreases with increasing N and corroborates that
the polymer chains in two dimensions are not disklike. We
investigate the transition from 2D to 3D behavior by study-
ing chains confined between surfaces. The 3D behavior is
recovered when the separation between the surfaces is twice
the monomer diameter.

The investigation of the structure of void space provides
useful insight not available from pair correlation functions
because they depend on three body and higher correlation
functions. Voronoi tessellation has proved to be a useful tool
to study nonspherical molecules or polydisperse materials
�31,40�, and this algorithm should help study pore structures
of realistic polymer materials.
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FIG. 8. Simulation results for percolation thresholds, �c, as a
function of N for three-dimensional polymer solutions.

FIG. 9. Simulation results for the pseudopercolation threshold
area fractions, �A, as a function of N for different values of the
finite thickness �h� in pseudo-3D.
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